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Feature-Adaptive Motion Tracking of Ultrasound
Image Sequences Using A Deformable Mesh
Fai Yeung, Stephen F. Levinson,*Member, IEEE, Dongshan Fu, and Kevin J. Parker,Fellow, IEEE

Abstract—By exploiting the correlation of ultrasound speckle
patterns that result from scattering by underlying tissue elements,
two-dimensional tissue motion theoretically can be recovered by
tracking the apparent movement of the associated speckle pat-
terns. Speckle tracking, however, is an ill-posed inverse problem
because of temporal decorrelation of the speckle patterns and the
inherent low signal-to-noise ratio of medical ultrasonic images.
This paper investigates the use of an adaptive deformable mesh
for nonrigid tissue motion recovery from ultrasound images. The
nodes connecting the mesh elements are allocated adaptively
to stable speckle patterns that are less susceptible to temporal
decorrelation. We use the approach of finite element analysis in
manipulating the irregular mesh elements. A novel deformable
block matching algorithm, making use of a Lagrange element
for higher-order description of local motion, is proposed to
estimate a nonrigid motion vector at each node. In order to
ensure that the motion estimates are admissible to a physically
plausible solution, the nodal displacements are regularized by
minimizing the strain energy associated with the mesh defor-
mations. Experiments based on ultrasound images of a tissue-
mimicking phantom and a muscle undergoing contraction, and on
computer simulations, have shown that the proposed algorithm
can successfully track nonrigid displacement fields.

Index Terms—Deformable mesh, finite element analysis, non-
rigid motion estimation, ultrasound images.

I. INTRODUCTION

ULTRASOUND images of soft tissues are characterized
by a granular pattern known as speckle in analogy to the

optical speckle observed with lasers. Given a stable scattering
structure, ultrasound speckle is deterministic and is temporally
stable for small tissue motions. The temporal correlation of
ultrasound speckle provides a basis for the recovery of tissue
motion by tracking the apparent movement of the associated
speckle patterns, when motions are in plane and are small.

Speckle tracking represents a promising development in
ultrasound imaging due to its potential advantages over one-
dimensional (1-D) ultrasound Doppler techniques [1]. It has
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been applied in a variety of biomedical applications, including
the use of an optical flow technique to assess local myocardial
deformation [2], and the use of a block matching algorithm
for blood flow assessment [3] and to derive tissue elasticity
information [4].

Unfortunately, the existing techniques are largely based
on motion estimation algorithms developed for digital video.
Despite similarities in the motion recovery problem for both
visual scene-oriented and ultrasonic medical images, the image
and motion models in the two types of images and, hence,
the strategies of motion estimation, differ from each other in
various aspects. A comparison of scene-oriented and ultrasonic
image sequences is summarized in Table I.

A. Challenges in Speckle Tracking

The inverse problem of motion recovery from ultrasonic
image sequences poses a significant challenge. The challenges
in speckle tracking are discussed as follows.

• Tissue deformation: Tissue motion consists not only of
translation and rotation but also deformation. Tissue de-
formation requires a higher-order local description.

• Noisy images: Ultrasonic medical images have a low
signal-to-noise ratio (SNR). The images are characterized
by Rayleigh-governed speckle noise and corrupted by
Gaussian-distributed electronic noise.

• Motion ambiguities: The spatial and temporal changes
of a speckle pattern can be quantified and derived with
local operators that compute the spatial and temporal
derivatives or match similarities in two frames. Ambi-
guities arise when there is insufficient representation of
spatial information, e.g., in regions of image saturation
or specular reflection or homogeneous regions of weak
acoustic scatterers.

• Spatial aliasing: Because of similarities shared among
different speckle patterns, spatial aliasing is likely to
occur if the tissue displacement is large compared to
the size of the speckle cell, resulting in false matches
or incorrect estimates of gradients.

• Speckle decorrelation: Since speckle patterns result from
the constructive and destructive interference of ultrasonic
echoes from numerous subresolvable elements, nonuni-
form movement of these scatterers in the insonified tis-
sue volume can cause temporal decorrelation of the
speckle patterns. The problem of speckle decorrelation
is especially prominent in regions with weak or diffuse
scatterers.
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TABLE I
COMPARISON OF SCENE-ORIENTED AND ULTRASONIC IMAGE SEQUENCES

Visual Scene Image Sequence Ultrasound Image Sequence

Image capture Camera Ultrasound scanner
Image plane Perspective projection of 3-D objects Cross section of 3-D tissue structures
Intensity function Smooth, slow varying across objects Speckle-like pattern, rapidly varying
Motion types Translation+ rotation rigid Translation+ rotation+ deformation
Typical resolution Pixel resolution (approx.) Pulse dimension resolution
Challenges Changes in external illumination,

occlusion, aperture problems,
no gray value changes

Low SNR, speckle decorrelation,
motion ambiguities, spatial aliasing

• Out-of-plane motion: Current state-of-the-art clinical ul-
trasound scanners are limited to imaging cross-sections
of three-dimensional (3-D) tissue structures. This restricts
the application of speckle tracking to the recovery of a
two-dimensional (2-D) motion field only. Furthermore,
out-of-plane motion can cause decorrelation of speckle
patterns from the diffraction pattern of the ultrasound
pulse in the elevational direction.

• Speckle motion artifacts: Speckle motion artifacts gener-
ally refer to apparent speckle motion inherent to the image
formation process itself. A good example of this is the
speckle rotation artifact [5] in which the apparent speckle
motion consists of the actual tissue motion plus a strong
translational component resulting from the curvature of
the system point spread function. Signal reverberation [6]
resulting from multiple reflections from specular struc-
tures may also produce false signals that are difficult to
handle by image processing means, but that often can be
eliminated manually by adjusting system parameters.

• Quantization error: Quantization errors in speckle track-
ing result from the discretization of the intensity function
and from the measurement of displacement vectors in
discrete steps.

Most problems in ultrasonic speckle tracking are related
to either an incomplete coupling or a decoupling of image
information from that of the underlying tissue. Among them,
speckle decorrelation has the most profound effect on the
accuracy of motion estimates since speckle tracking algorithms
depend on the stability of the speckle pattern. Understand-
ing these problems may make it possible to develop better
strategies for motion tracking.

B. A New Approach to Speckle Tracking

Our goal was to devise a motion estimation algorithm that is
sufficiently robust to be suitable for ultrasonic speckle tracking
of soft tissue motion. The first step toward accurate motion
estimation is to extract features from speckle patterns that are
stable with the underlying tissue motion. This requiresa priori
knowledge of ultrasound speckle models. The speckle pattern
resulting from the presence of numerous weak scatterers is
generally governed by Rayleigh statistics [7]. In this case,
the speckle has a constant contrast (SNR1.91) and a
fixed speckle cell size related only to the system point-spread-
function of the ultrasound scanner. In other words, the first-
and second-order speckle statistics do not carry any signature

information from the tissue itself. On the other hand, speckle
patterns that result from periodic strong scatterers appear to
be brighter, larger, and more structural than speckle patterns
from diffuse scattering. These structural speckle patterns in
the ideal case are temporally stable under conditions of small
tissue motion.

In order to capture temporally stable speckle features, a
feature energy function has been formulated that consists of
a sum of oriented band-passed decompositions of ultrasound
images using multichannel filters. A quadrilateral mesh is then
generated by assigning mesh nodes adaptively to places of
high feature energy, and motion vectors are estimated only at
those nodes. The motion estimates should be more reliable by
tracking speckle patterns that are less susceptible to temporal
decorrelation. Manipulation of the irregular mesh elements is
accomplished through the application of finite element analysis
(FEA). FEA provides a convenient mathematical tool that
allows the construction of a novel deformable block matching
algorithm. The algorithm involves the mapping of an irregular
mesh element to a regular parent element using a Lagrange
element for higher-order description of local motion. Because
the mapping compensates for local tissue deformations, a
traditional block matching algorithm that assumes motion
rigidity can then be applied to estimate local motion vectors.

The effect of speckle decorrelation on motion tracking is
further reduced by using a regularization method, as demon-
strated in [8]. Specifically, the speckle tracking problem is
formulated as a conservative dynamic system in which the
motion solution results from the minimization of two energy
functions. The first energy function is a similarity measure.
The second function is based on the strain energy of the mesh
elements, which acts as a stabilizing functional to ensure that
the motion estimates are admissible to a physically plausible
solution.

II. A DAPTIVE DEFORMABLE MESH

In general, a mesh is a partition of an image domain into
polygonal elements. Motion vectors are estimated only at the
nodal points where the mesh elements intersect. The generation
of a feature-adaptive hierarchical mesh is accomplished in two
steps. First, features of the speckle patterns that are temporally
stable are extracted. Next, an hierarchic mesh is generated
adaptively by allocating nodes to regions of high feature
energy and dividing those mesh elements that have a high
intraelemental feature energy into finer elements.
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(a) (b)

Fig. 1. Diagram of frequency responses of (a) Gabor filters. (b) Diagram of idealized frequency responses of the steerable wavelet pyramid. The frequency
domain of an image in both diagrams is divided into subbands of three scale levels and orientations at 0�, 45�, 90�, and 135�.

A. Feature Extraction

Features such as scale and orientation of speckle patterns are
obtained from subband decomposition of ultrasound images
using multichannel bandlimited and directional filters. Two
such filters are Gabor wavelet filters [9] and the steerable
wavelet pyramid [10]. Fig. 1 compares the directional spatial
frequency responses of the two filters. Scale and orientation in-
formation from the separate outputs of subband decomposition
are used to facilitate feature extraction. In doing so, the outputs
of subband decomposition are used to form a composite feature
energy map , which is a sum of the energy of bandpass
filter outputs

(1)

where and are the indexes of scale and orientation,
respectively, and is the energy of the filter outputs.
Note that the low-pass (inner portion of the filter diagrams) and
high-pass (outer portion of the filter diagrams) energy bands of
the image are not used in the feature composition because they
contain little useful information for characterization of speckle
patterns. Ideally, the center frequency of the bandpass (middle
portion) energy band should be chosen to correspond to the
spatial frequency of anatomical tissue features (e.g., muscle
fascicles).

Fig. 2 shows a B-scan of a human forearm that contains
groups of muscles overlying a bone, theulna, along with the
corresponding composite feature map. As can be seen, the
feature map emphasizes regions of highly structural content
and de-emphasizes homogeneous regions such as the region
at the left of the image and the bone at the bottom.

B. Feature-Adaptive Mesh Design

The generation of a feature-adaptive mesh begins with
the allocation of nodes using the composite feature energy
map. Ideally the nodes should be distributed more or less

(a) (b)

Fig. 2. (a) An ultrasound image and (b) its corresponding composite feature
map. The size of the region of interest is 100�100 pixels, or 2.5�2.5 cm2.

uniformly within the region of interest. Although a regular grid
could easily be superimposed on the image, the nodes would
not necessarily correspond to the regions of highest feature
energy. In order to place the nodes appropriately, the nodes are
considered to be connected by elastic springs. A load is applied
to each node consisting of an attractive force that acts to move
the node to the vicinity of areas of high feature energy. We start
by placing a uniformly spaced rectangular grid over the region
of interest of the image plane. The potential energy at node,

, is a combination of the internal spring restoration energy
and the feature energy possessed by the applied load

(2)

where at each node is the total sum of the squared length
changes of the springs connected to the node ,

is the spring constant, is the composite feature energy at
the nodal position in the unstretched configuration, and
is the squared magnitude of the nodal displacement vector.
The length change is expressed as the difference of the rest
length and the stretched length, i.e., . In the
mesh design it is assumed that all springs are identical so that
they have the same spring constant. The choice of the spring
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Fig. 3. Illustration of the unstretched and stretched springs of a node.

constant can be used to control the degree of deformation of
the initial regular grid.

The formulation of mesh generation in terms of potential
energy can be used to determine a configuration of nodal
positions. This is done by moving a node to a location of
minimum nodal potential energy while fixing its neighboring
nodes to their original locations. The movement of a node
must be restricted so as not to produce a degenerate element.
The easiest way to prevent the degeneration of an element is
to limit the movement of a node within the boundary shown
in Fig. 3. The nodes at the boundary may be fixed so as to
retain a constant region of interest.

The mesh is incorporated within an hierarchic scheme in
order to handle tissue displacements that are large compared
to the size of grid element. In successive hierarchic levels after
nodal allocation, each mesh element is subdivided recursively
into four finer mesh elements until the number of subdivisions
reaches an allowed value. Nodes are added to each element if
its intraelement feature energy is above the threshold value

(3)

and the interpolation error is below the threshold

(4)

where and denote the intensity function of the
reference and comparison frames, respectively, andis the
estimated motion vector. The threshold values,and are
selected in such a way that only mesh elements with high
intraelement feature energy and low speckle decorrelation
undergo mesh division. The integration of feature energy
and interpolation error over an element is calculated
easily using the Gauss quadrature formulation described in
the Appendix. In order to ensure connectivity of the mesh
structure, “floating” nodes are added to unassigned mesh
elements. The position vectors of those nodes are uniformly
interpolated from their neighboring nodes from the previous

(a) (b) (c)

Fig. 4. Allocation of nodes. (a) The initial quadrilateral mesh. (b) The mesh
structure after spring energy minimization in the first hierarchic level. (c) The
mesh after subdivision in the second level. The normal and floating nodes
are denoted by squares and circles, respectively. The normal nodes in (c) are
either inherited from the initial mesh in (b) or added when the intraelement
feature energy is high and interpolation error is small.

Fig. 5. Flow diagram of the mesh-based motion estimation algorithm.

level. Fig. 4 demonstrates the mesh structure of the first two
hierarchic levels.

III. N ONRIGID MOTION ESTIMATION

Fig. 5 shows a flow diagram of the implementation of our
mesh-based speckle tracking method. The algorithm starts with
an initialization step which extracts useful features, allocates
nodes in the first hierarchical level and estimates initial tissue
deformation by tracking successive frames of the compos-
ite feature energy map using the traditional block-matching
technique. The motion estimation step consists of two distinct
parts: deformable block matching and regularization.

The mesh design and motion estimation are implemented
hierarchically in a unified framework. After the first pass,
mesh elements are divided into finer elements. Position and
motion vectors at newly added nodes are interpolated from the
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Fig. 6. Illustration of mapping of an irregular element to a regular parent
element using a Lagrange shape function. The boundary of the allowed search
region is marked using dashed lines. In this illustration, Node 9 is the target
node.

existing nodes in a neighborhood. Deformable block matching
and regularization procedures are executed again to update
the estimates.

Production of a dense motion field in which motion vectors
are obtained for all pixels in the image can be achieved using
the inverse mapping of a four-node bilinear element [11] or
the surface reconstruction method for sparsely distributed data
points [12].

In the following, we shall describe the deformable block
matching and regularization steps.

A. Block Matching Using Lagrange Elements

Deformable block matching is achieved by the use of a
Lagrange shape function capable of representing second-order
local motions so that an algorithm based on the assumption
of rigidity can be extended to the situation of nonrigid motion
estimation. The first step in deformable block matching is the
mapping of an irregular mesh element to a regular parent
element as illustrated in Fig. 6. The parent element of
the target node is mapped from a nine-node macro-element
using the Lagrange shape function (see the Appendix). The
transformation not only compensates for deformation due to
local nonrigid motion but also facilitates the manipulation of
irregular mesh elements. Since the transformation of the mesh
elements in the comparison frame accounts for tissue deforma-
tion, a normal block matching algorithm can be applied over
the regular lattice of the parent element.

The parent mesh element is discretized to a 4040 regular
grid. The intensity value at each grid point is interpolated
from the nodal values using (18). The discretization number
of the parent element determines the potential sensitivity of
the motion estimate, with the parent element resembling the
search window in traditional block matching. With a 1515
matching block at the target node in the reference parent
element, the data block is used to compare this with another
block positioned at a grid point in the comparison parent
element. The search procedure seeks an optimal solution by
minimizing the sum of the squared difference between the data
blocks in the reference element and the comparison
element

(5)

where is the matching block, is the image frame number,
is the index of discretized grid of the parent element and

is the Jacobian of the element The displacement
vector is the estimated vector between the position of the
target node and the best-matched position in the comparison
parent element. Block matching is performed over reference
and comparison parent elements of normal target nodes only,
denoted by the set .

The estimate of the motion vector at the target node
is given by

(6)

where is the Lagrange shape function calculated with, i.e.,
, is the position vector of the target node in the

undeformed configuration, and is the nodal position vector
in the deformed configuration.

The deformed configuration of is admissible only to a
configuration that satisfies internal compatibility. The compat-
ibility constraint is a nonzero Jacobian of the mesh element,
satisfying . This implies that the comparison of match-
ing blocks is restricted to the region marked by dashed lines in
Fig. 6, thus, preventing the possibility of mesh degeneration
in the comparison frame.

B. Regularization

As speckle tracking is an ill-posed inverse problem, max-
imum likelihood estimators such as sum squared difference
are inadequate for accurate motion estimation. Regularization
methods [13] are therefore needed. In mesh-based motion
estimation, a conservative dynamic system is applied that has
a potential energy and boundary conditions. In the dynamic
mesh structure, changes in the shape or size of a mesh element
resulting from an applied “imaging force” are considered to
be associated with a strain energy. The imaging force is a
similarity measure that preserves the intensity function at each
node.

Although the strain energy formulation makes use of the
theory of elasticity and involves the use of stress and strain
tensors, the reader is cautioned against relating these parame-
ters to the actual elasticity, stress, and strain within the imaged
tissue. In our application, elastic theory is simply a convenient
construct used to facilitate mesh regularization. Indeed, the
selection of the elastic modulus in our model is completely
arbitrary since a separate parameteris used to control
the degree of regularization applied. The possibility of using
actual tissue elasticity for mesh regularization, perhaps using
a dynamic iterative approach in which elasticity is calculated
from the measured displacements and then used to refine the
displacement values, is an intriguing one that is beyond the
scope of this paper.

If the system is assumed to be conservative so that the
associated work depends only on the difference between the
undeformed and deformed configurations, the total potential
energy of the dynamic mesh system can be expressed as

(7)
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where is the affinity energy based on the similarity measure
of matching data blocks and is the deformation energy of
the mesh structure. The boundary conditions are the prescribed
values of the nodes. Since the potential energy is computed
using a nine-node macro-element (Lagrange element), the
nodes at the boundary of the mesh are assigned with pre-
scribed motion vectors obtained by traditional block matching
methods.

The affinity energy has the form

(8)

where is the motion vector estimated by deformable
block matching at the normal nodes (denoted by). The
deformation energy is given by

(9)

where is the strain, is the stiffness matrix, is a matrix
of regularization parameters, and is the set of all floating
nodes (the strain energy constraint is applied to both normal
and floating nodes). The values of strain are computed from
the nodal displacements using the strain-displacement relation

. The matrix is given as

(10)

where is the inverse of the Jacobian matrix and consists
of the derivatives of the shape function of the Lagrange ele-
ment (see the Appendix). Since the external load of similarity
matching is applied over the 2-D imaging plane, an isotropic
plane stress model can be used in formulating the matrix

(11)

where is a regularization parameter, is the Young’s
modulus [14], and is Poisson’s ratio. For soft tissues, which
are nearly incompressible, Poisson’s ratio approaches 0.5 and,
hence, it seems reasonable to apply the same value here. Since
the regularization parameteris assigned arbitrarily to control
the degree of mesh deformation, the Young’s modulus does not
need to be determined for a homogeneous mesh structure with
uniform stiffness. In the case of plane stress, strain has three
components

(12)

C. Minimization Algorithm

The total potential energy in (7) can be written as

(13)

where , contains the nodal motion estimates
by deformable block matching at the normal nodes only, and
contains the constant terms. The matrix, the identity matrix,

has zeros everywhere except that the diagonal elements corre-
sponding to the normal nodes are set to one. The equilibrium
configuration is found from the stationary value of the total
potential energy

(14)

When the configuration of nodes is in equilibrium, the total
potential energy in (13) is at minimum for a stable system. Al-
though the optimal configuration can be calculated by solving
the linear equations of (14), the computation is formidable for a
large number of nodes. Iterative methods should, therefore, be
used instead. Many gradient descent algorithms can be used to
minimize the energy function. The conjugate gradient descent
(CGD) algorithm [15] is particularly well suited because of its
effectiveness in using the gradient information of a quadratic
equation such as (13). The gradients ofand in (7) have
the form

(15)

and

(16)

Readers are referred to [15] for a more complete explanation
of the CGD algorithm.

IV. EXPERIMENTS AND RESULTS

In order to provide a suitable test of the reliability of the
algorithm for speckle tracking, experiments were performed
using synthetic images, computer-simulated rotation and com-
pression, phantom experiments of translation and compression,
and ultrasound images of muscle contraction. In the exper-
iments that used synthetic images and computer simulations,
the performance of the proposed algorithm with different types
of nonrigid motion was tested. In the experiments in the
phantom, the robustness of the algorithm in handling speckle
decorrelation was demonstrated through the application simple
controlled motions. Thein vivo experiments involving muscle
contraction evaluated the performance of the algorithm in a
more realistic, although less controlled situation.

A. Simulation of Nonrigid Vibration

In the ideal case the accuracy of the speckle tracking
algorithm should be tested in a situation in which the actual
motion is known. Because of the difficulty in producing known
nonrigid motion fields in biological tissues and of accurately
measuring internal displacements by other means, we chose
instead to simulate motion fields using finite element methods.

Fig. 7 illustrates a 2-D inhomogeneous simulated tissue
phantom consisting of a hard inclusion embedded within
a softer homogeneous material. The hard inclusion has a
Young’s modulus [14] of 40-k Pa and is embedded in a media
with a Young’s modulus of 10-k Pa. The dimension of the
tissue phantom is 10 cm10 cm. The inclusion is a square-
shaped region of dimension 2 cm2 cm. A sinusoidal force
was applied along the plane of symmetry and a finite element
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Fig. 7. Parameters used in the FEM simulation of tissue motion.

analysis software package, MSC/NASTRAN (The MacNeal-
Schwendler Corp., Los Angeles, CA) was used to simulate
the nonrigid tissue motion [16].

Ultrasound image sequences of speckle patterns were sim-
ulated using Rayleigh statistics. A second speckle image was
mapped from the first image using the tissue motion at a
finite time delay, simulated by the finite element analysis
software. Warping of speckle pattern rather than the tissue
scattering function, however, eliminates the effects of speckle
decorrelation.

Fig. 8 shows the surface plots of the horizontal and
vertical components of the motion vector field. Surfaces
plots (a) and (b) are the actual motion components generated
by the finite element analysis software. Plots (c) and (d) are the
dense motion field reconstructed from (a) and (b), respectively.
To evaluate the performance of the algorithm in the presence of
noise, the two image pairs were corrupted with Gaussian noise
(SNR 10 dB) and the motion vectors were then recomputed,
as shown in plots (e) and (f).

From the results, it is demonstrated that the speckle tracking
algorithm successfully tracked the nonrigid motion field, even
under noisy conditions. The mean squared tracking errors
[8] in pixels for noise-free and noisy images were 0.73 and
1.23, respectively. These errors were small compared to the
maximum motion amplitude (6.2 pixels). It can be noted that,
although the basic form of the estimated motion matches that
of the actual motion, the algorithm does not track motion as
accurately along the image boundary as in the center. This is
due to two reasons. First, the nodal motion vectors along the
image boundary have prescribed values obtained by traditional
block matching which does not take tissue deformation into
account. Second, the regularization parameterand Young’s

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Surface plots of the motion components showing mesh-based motion
tracking results of FEM simulation data: (a) actual motionu1, (b) actual
motion u2, (c) reconstructed dense motion fieldu1, (d) reconstructed dense
motion fieldu2, (e) reconstructed dense motion fieldu1 based on noisy images
(SNR= 10 dB), and (f) reconstructed dense motion fieldu2 based on noisy
images (SNR= 10 dB). TheZ axis represents motion amplitude, whileX
andY axes represent the spatial coordinates.

modulus have a profound effect on the smoothness of the
estimated motion field. While the degree of smoothness in the
hard inclusion seems to be adequate, the motion field in the
soft surrounding region is over-constrained.

A variable parameter adaptive to the elastic properties of
the tissues may be useful to control the degree of smoothness
in different physical regions. However, this is beyond the
scope of this paper. For an homogeneous tissue medium,
prescribed need not be computed sinceis a user-supplied
control parameter. Increasing the value ofwould be expected
to increase motion smoothness at the expense of motion
detail, whereas decreasingcan be expected to increase the
likelihood of incorrect estimates.

B. Simulation of Rotation and Compression

Both rotational (5 clockwise) and compressional (10%
vertical compression and 10% horizontal expansion) motion
fields were used to test the performance of the mesh-based
speckle tracking algorithm. Ultrasound image sequences were
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(a) (b)

Fig. 9. Dense motion vector field of mesh-tracking results of simulated (a) rotation and (b) compression.

created by warping a Rayleigh-governed envelope-detected
speckle image into another image frame using the simulated
motion fields. The ultrasonic frequency in the simulation
model is 5 MHz and the pixel to meter ratio is 6800. The
region of interest of the rotational motion field was 195195
pixels (2.87 2.87 cm ) and that of the compressional motion
field was 120 120 (1.76 1.76 cm ).

Fig. 9 shows the motion vector diagrams of the tracking
results. The tracking errors in pixels are 0.70 and 0.62 for
rotation and compression, respectively.

C. Phantom Experiments

Translation and compression experiments were performed
using a gelatin-based tissue-mimicking phantom of dimension
14.5 cm 9.8 cm 5.6 cm. Fig. 10 illustrates the experimental
setup. Ultrasonic echo data was collected using a GE LOGIQ
700 scanner with the Extend package. The Extend package
transferred 8-b B-mode digital ultrasound data directly from
the commercial scanner LOGIQ 700 console to an on-board
computer for later transfer to an SGI Oworkstation (Silicon
Graphics, Inc., Mountain View, CA). A linear-array ultrasound
transducer (5 MHz), fixed firmly to a 3-D manipulator, was
placed on the top of the phantom. A 4 cm3 cm imaging
region, corresponding to 300200 pixels, was selected.

1) Translation: In the translation experiment, the trans-
ducer was linearly translated in 5 mm (0.1 mm) lateral
increments. Each increment of translation corresponded to 3.76
pixels. A mesh, with a size of 128128 pixels and a total of
256 nodes, was imposed onto the image frames for motion
tracking.

Fig. 11 shows the 2-D dense motion field tracking result.
The mean-squared tracking error and PSNR were 0.141 pixels
(0.1302 pixels in motion component and 0.011 pixels in
component) and 71.98 dB, respectively. For translation mo-
tion, the tracking accuracy reaches 96.28% in this experiment.

Fig. 10. Diagram of the experimental setup.

Fig. 11. Dense motion vector field resulting from the translation experiment.

2) Compression:In this experiment, an homogeneous
tissue-mimicking gelatin phantom was placed between two
plates. The top plate acted as a tissue compressor. The degree
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Fig. 12. Dense motion vector field resulting from the compression experi-
ment.

of compression was controlled using a 3-D manipulator. In
each compression step, the top plate moved downward by 0.6
mm. A transducer was placed within an opening in the bottom
plate underneath the phantom. The top plate was restored to
its original position when it could move down no further.

A 240 240 mesh (640 nodes) was used for mesh-based
tracking. A dense motion vector field of the phantom com-
pression results is shown in Fig. 12. Fig. 13 plots the
motion component (averaged over ten-pixel columns along the
center) versus depth. The resulting curve, roughly a straight
line, agrees with the expectation of constant strain caused by
a uniformly distributed stress in an homogeneous medium.
The expected displacement curve is plotted as a solid straight
line. For comparison, the displacement curves of previously
used block-based algorithms [8] derived from the same image
frames are also given. The mean squared tracking error in
pixels of the mesh-based tracking result is 0.005, while those
of block-based algorithms (FSBM, MLBM, and SMBM) are
0.034, 0.047, and 0.031, respectively. From the displacement
curves, the quantization effect is obvious for the block-based
algorithms. In this experiment, the mesh-based tracking algo-
rithm significantly outperformed the block-based algorithms.

D. Muscle Contraction Experiment

In order to evaluate the algorithm in living tissue, a complex
muscle motion experiment was performed. Although it was not
possible to measure the true motion of the muscles indepen-
dently of speckle tracking, we felt that the data obtained could
provide important insights into the ability of the algorithm to
handle nonrigid motion fields from clinical data.

The ultrasound image sequence was obtained by scanning
the forearm from a single subject in cross-section using a
7-MHz linear array ultrasound scanner (Acuson, Mountain

Fig. 13. Plot of vertical motion component of phantom compression using
feature adaptive mesh (mesh), full-scale (FS), multilevel (ML), and smooth
motion (SM) block matching (BM) methods.

(a) (b)

Fig. 14. Illustration of two image frames of a muscle contraction sequence
superimposed with (a) deformed and (b) undeformed mesh structures. The
normal nodes are marked by squares. The first figure, with labels provided for
the different regions, can be found in [8]. At first, no motion may be evident to
the reader because the motions are small and quantized to integer pixel values.
More careful observation, however, particularly along the mesh boundaries on
the right, will reveal a difference between the two image frames.

View, CA) at a frame rate of 16 Hz. The resulting image
(Fig. 14) demonstrates a bright region at the bottom, theulna,
on top of which are the forearm flexor muscles, blood vessels
and nerves. Two groups of muscles, the flexordigitorum
superficialisat the top right and theflexor digitorum profundus
in the middle right are of interest in this experiment, as these
are the muscles responsible for finger flexion. The subject
was asked to bend his middle finger against resistance so as
to contract these two muscles to a greater degree than the
surrounding musculature.

Two frames of the muscle contraction sequence, upon which
the mesh structures have been superimposed, are illustrated in
Fig. 14. It was observed that the mesh nodes migrated to the
locations of more structural speckle patterns and the vicinities
of differentiated tissue structures were packed more densely
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Fig. 15. Dense motion vector field of muscle contraction.

with nodes. The dense motion vector field is plotted in Fig. 15.
From the motion vector field, it is easy to differentiate among
the muscle groups involved in finger contraction. Although the
actual displacements in various regions of the image are not
available, the estimated motion field is in agreement with the
expected anatomical changes.

V. SUMMARY AND DISCUSSION

In this paper an adaptive mesh has been proposed for
nonrigid tissue motion estimation from ultrasound image se-
quences. A deformable blocking matching algorithm has been
developed which takes into consideration both similarity mea-
sures and strain energy caused by mesh deformation. By
partitioning an image domain into polygonal elements, the
mesh constitutes an efficient representation of image intensity
information. The treatment of speckle tracking using a mesh
structure has distinct merit in visualizing tissue motion. Ma-
nipulation of irregular mesh elements is aided by a wealth of
well-established mathematical tools in finite element analysis.

Recently, mesh-based motion modeling has also been suc-
cessfully applied in digital video processing. A multiresolution
representation called the quadtree spline has been proposed
by Szeliski and Shum [17] to describe the motion field as a
collection of connected patches of varying sizes adaptive to
the complexity of the motion. A preconditioned conjugated
gradient is used to solve for the motion estimates, regulated
by the smooth function of a coarse-to-fine spline control
grid. Toklu et al. [18] proposed a mesh-based motion model
under the mild deformation assumption to track the motion
of deformable objects such as a flying flag. Wang and Lee
[11] used an iterative gradient-based nodal motion vector esti-

mation method based on a deformable mesh that takes image
gradient information into account. A closed-form technique
has been suggested by Altunbasak and Tekalp [19] to compute
the optimal motion vector at each node while preserving mesh
connectivity constraints.

Our mesh-based speckle tracking algorithm differs from
these methods in many different ways. First, both mesh
design and motion estimation in our algorithm are specifically
designed for speckle tracking. The mesh serves as a superior
framework for ultrasonic speckle tracking in that mesh nodes
are allocated adaptively to anticipated stable speckle patterns.
Second, the ability of an algorithm to describe higher-order
local motion is ultimately limited by the type of mesh elements
used in mesh tracking. We employed a nine-node Lagrange
element with deformable block matching to approximate local
motion to the second order. Finally, for the matching-based
methods, search procedures for optimal motion estimation
within irregular mesh elements are cumbersome to implement.
We implemented a search process over the regular parent
elements, as opposed to the irregular mesh elements.

The extension of a block matching algorithm to nonrigid
motion estimation is an important contribution of this paper.
The preference of using the Lagrange element over other
higher-order elements is due to its simplicity as an extension
of the four-node bilinear element and its ability to exhibit all
possible deformations of a quadratic element. Elements that
are higher than second-order could describe nonrigid motion
fields better still, but at the expense of increased complexity.

The mapping of an irregular element to a regular parent ele-
ment offers many advantages in motion tracking. In traditional
block matching, subpixel motion estimates are obtained by
interpolation. However, this technique is difficult to implement
with an irregular lattice. By discretizing the parent elements,
finer motion estimates can be obtained by discretizing to
a finer grid. Moreover, instead of checking for degenerate
cases in irregular elements, it is much easier to impose the
compatibility constraint by restricting nodal movement in the
regular parent element.

Implementation of the algorithm in an hierarchic scheme
offers a solution to problems related to measurement of local
tissue motion. A multilevel block matching algorithm for
speckle tracking that has previously been introduced [8] is
adapted to the hierarchic structure of the mesh implementation.
The nodal motion vectors from each hierarchic level are
passed on to the successive levels such that the final estimates
will consist of the sums of the motion estimates from all
levels. The algorithm estimates coarse motion fields using
large mesh elements in the initial level and successively
passes the result to the subsequent levels, each of which
uses smaller mesh elements than the previous level. This
strategy helps to reduce the problems of motion ambiguities
and spatial aliasing in speckle tracking. Since each level has
a finer grid spacing than the last, initial estimates of the
additional nodes are interpolated from the existing nodes in the
surrounding neighborhood, helping to accelerate convergence
of the minimization process.

Last but not the least, the connectivity of the mesh and
the strain energy constraint effectively reduce the effect of
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(a) (b)

Fig. 16. Illustration of (a) nine-node Lagrange parent element and (b) Gauss point locations in the Lagrange element.

speckle decorrelation caused by nonuniform movement of
scatterers and out-of-plane motion. This strategy also handles
the problem of low SNR in ultrasound images by aligning the
local data of weak estimates to those of strong estimates. One
potential disadvantage of using the strain energy constraint is
a blurring effect at motion boundaries. Fortunately, motion
continuity is still valid even at the boundaries of tissues
with differing properties because the stress function is also
continuous. In the experiment of a simulated motion field in
an inhomogeneous medium, the tissue motion was continuous
across the boundary of the hard inclusion and its surrounding
soft medium. However, motion fields may be discontinuous
at the boundaries under conditions of slip. This is the case
at the boundaries of different groups of muscles. Further
investigation is needed into discontinuity-adaptive methods for
motion tracking of biological tissues.

APPENDIX

FINITE ELEMENT ANALYSIS

This section gives an overview of FEA techniques employed
in the formulation of the proposed algorithm. Readers unfa-
miliar with FEA techniques are referred to [20]. Our approach
involves making use of the shape function obtained from a
finite element representation of an irregular mesh grid. As
such, our method differs from more conventional approaches
in which FEA is used to represent a system of equations to
calculate the displacements resulting from an applied external
load (forward problem) or to derive the underlying tissue
properties from known displacements (inverse problem).

The mesh is designed to approximate a function over a
continuous domain. The function within each mesh element
is interpolated from its nodal values. Such interpolation is
denoted by a shape function . The shape function of a
nine-node Lagrange element, illustrated in Fig. 16(a), is given
by

(17)

where and are intrinsic coordinates in the parent element.
The shape function has a value of unity at the node to which
it is related. It also has the property that the sum at any point
within an element is equal to unity. The efficiency of any
particular element type will depend on how well the shape
function is capable of representing the local displacement field.
The shape function of the Lagrange element is capable of
representing second-order nonrigid motion.

The initial step in finite element analysis is the unique de-
scription of an unknown function within each irregular element
in terms of the values of this function at the nodal points of
the element. Each irregular element, can be thought of
as being deformed from a regular parent element Both
the displacements and coordinates can be interpolated from
the nodal values using the same shape function. Coordinates

and within an irregular element are defined by

and (18)

Similarly, displacements and are given by

and (19)

where and are displacements in the parent element.
The forward transformation of an arbitrary irregular element

into a regular one is important in manipulating the mesh
elements. The properties of the transformation are investigated
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by its Jacobian matrix

(20)

which contains the derivatives of the shape function. The
derivative matrix of the shape function is given by

(21)

The determinant of the Jacobian matrix is regarded
as a scale factor that is the ratio of the area to .
The coordinate transformation is unique and invertible if and
only if its Jacobian is nonzero everywhere. The Jacobian must
be positive for every mesh element. The inverse matrixof

is given by

(22)

The determinant of the Jacobian matrix plays an important
role in the numerical integration of integrals. In finite element
analysis, an integral is evaluated numerically based on the
Gauss quadraturemethod, rather than analytically. The inte-
gration over an arbitrary element can be accomplished over
the regular parent element by a change of variables, as

(23)

The right-hand side of (23) is calculated using the Gauss
quadrature rule which states that, for a function, numeric
integration can be approximated as

(24)

where the function is estimated at one of the
Gauss points illustrated in Fig. 16(b).
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